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1. Uncertainty in Rough Set Theory



Key Issues in Rough Set Theory

Rough set theory

Approximate
method Uncertainty Attribute

reduction

Rough set theory is a usual soft computing tool for dealing 
with imprecise, uncertain, and vague information.



Concepts

Certainty is regular, certain, crisp and exact properties in 
the development process of objective things.

Uncertainty is unordered, casual, fuzzy and approximate 
properties in the development process of objective things.

Uncertainty



Randomness is an uncertainty caused by that the condition can 
not determine the result.
Fuzziness is an uncertainty caused by the unclearness of object’s 
classification.
Roughness refers to the uncertainty of concept approximation in 
rough set theory, which is caused by the inequality between the 
upper approximation and the lower approximation. 
Granulation uncertainty argues that a cognitive subject is 
uncertain on the current information granulation.

Randomness and fuzziness are two basic natures of uncertainty.

Uncertainty from Four Views



Three Types of Measures

RoughnessRandomness Granulation 
uncertainty

Roughness 
degree

Information 
entropy

Information 
granularity

Fuzziness

Fuzzy 
entropy



Let  S = (U, A) be an information system, U / A = {X1, X2, …, Xn} 

is a partition on U and pi = p(Xi) = 

Information Entropy
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Complementary entropy
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Where                   denotes the probability of pairs of the elements which are 
distinguishable each other within the whole number of pairs of the elements 
on the universe. 



The above three measures of randomness can be used to 
measure the significance of attributes in an information system.

Information Entropy’s Applications
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Conditional entropy in decision tables
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Shannon’s conditional entropy

Complementary conditional entropy

Combination conditional entropy

Conditional Entropy



The above three measures of randomness can be used to 
define the significance of attributes in a decision table, which are 
as follows.

( , , ) (

Conditional Entropy’s Applications
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Rough degree
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Roughness

The roughness of a target concept results from its 
boundary region induced by the lower approximation and 
the upper approximation. 

The roughness of a target concept results from its 
boundary region induced by the lower approximation and 
the upper approximation. 

For the different approximation spaces, the rough degrees 

of a target concept may be identical.



Rough entropy of X
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Rough Entropy

Rough entropy of A
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The rough entropy possess the better depicting ability than the rough 
degree for measuring the roughness of a rough set. 



Relationship between the rough entropy and Shannon’s 
entropy in an information system
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See: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004, 
12 (1) : 37-46.

The relationship between the rough entropy and Shannon’s entropy is 
strict complement relationship, and they possess the same capability on 
depicting the uncertainty of an information system. 



Fuzzy entropy

Fuzziness
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A fuzzy entropy characterizes the fuzziness degree of a fuzzy set.



Fuzziness of a rough set

Fuzziness

For any object            , the membership function of   is denoted byu U∈ u X∈
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where             represents a fuzzy concept. The fuzziness of the rough set can be 
measured by the following fuzzy entropy    
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Fuzzy entropy can be employed to measure the fuzziness of a rough set or 
a rough decision in rough set theory.    



Information Granularity

Knowledge granularity
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See:  International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 
2004, 2008.

( ) ( ) 1E A GK A+ =

( ) ( ) 1CE A CG A+ =

Information granularity denotes the average measure of a 
granular space induced by some information granules.



Rough partial-order relation

Partial Order Relation

Let K = (U, R ) be a group of granular spaces and P, Q ∈ R. K(P) = 
{ NP(x), x∈U } and K(Q) = { NQ(x), x∈U } the granular structure induced by 
P and Q, where NP(x)  and NQ(x) are the neighborhood induced by object x
with respect to P and Q.

Rough partial order relation     is defined as: ≺

( ) ( )( , ) ( ) ( ), .P QK P K Q P Q R N x N x x U∈ ⇔ ⊆ ∈≺

If                     and                     , we say K(P) is strictly finer 
than K(Q) , denoted by 

( ) ( )K P K Q≺ ( ) ( )K P K Q≠
( ) ( ).K P K Q≺



Granulation partial order relation     is defined as: �

( ) ( )K P K Q ⇔�

If                      and                     , we say K(P) is strictly 
granulation than K(Q) , denoted by 
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There exists a bijective mapping function 
: ( ) ( )f K P K Q→ such that | ( ) | | ( ( )) |, .P PN x f N x x U≤ ∈

If there is a bijective mapping function                           such 
that                                           denoted by  

: ( ) ( )f K P K Q→
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Granulation partial-order relation



Rough partial-order 
relation

Rough partial-order 
relation

Granulation partial-
order relation

Granulation partial-
order relation

See: IEEE Transactions on Fuzzy Systems, 2011, 19(2): 253-264.



N( o1) n-  ( neg) 0; ( at )iveG P ≥

(2)  ,P Q∀ ∈

Axiom 1: Let K = (U, R) be a group of granular spaces,  if for          
R, there is a real number G(P) with the following properties: 

Axiom Approach of Information Granularity

P∀ ∈

, ( ) ( ), ( ) ( Invar); ( )iabilityif K P K Q thenG P G Q= =R
(3)  ,P Q∀ ∈ , ( ) ( ), ( ) ( ).if K P K Q thenG P G Q<≺R (Rough

monotonicity)
Then G is called a rough granularity on K.



N( o1) n-  ( neg) 0; ( at )iveG P ≥

(2)  ,P Q∀ ∈

See: Information granules and entropy theory in information systems. Sci. China., Ser. F. 
51, 1427-1444 (2008)

Axiom 2: Let K = (U, R) be a group of granular spaces,  if for          
R, there is a real number G(P) with the following properties: 

P∀ ∈

, ( ) ( ), ( ) ( Invar); ( )iabilityif K P K Q thenG P G Q≈ =R
(3)  ,P Q∀ ∈ , ( ) ( ), ( ) ( ).if K P K Q thenG P G Q<�R Granul( ation

monotonicity)
Then G is called an information granularity on K.



1(1)  ( ) is an information granularity, ( ) 1.
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(2)  ( ) is an information granularity, 0 ( ) 1.CG A CG A≤ ≤

2(3)  ( ) is an information granularity, 0 ( ) log | | .r rE A E A U≤ ≤

See: Information granules and entropy theory in information systems. Sci. China., 
Ser. F. 51, 1427-1444 (2008)

It has been proved that some existing definitions are various 
special forms of information granularity.

Related Properties



Knowledge Distance

In rough set theory, information entropy and knowledge granulation 
are two main approaches to measuring the uncertainty of a 
knowledge structure in knowledge bases. 

If the knowledge granulation (or information entropy) of one 
knowledge structure is equal to that of the other knowledge structure, 
we say that these two knowledge structures have the same 
uncertainty. 

However, it does not mean that these two knowledge structures are 
equivalent each other. 

Information entropy and knowledge granulation cannot characterize 
the difference between any two knowledge structures in a 
knowledge base. 



For the information system ( , ), , .The knowledge 
distance between ( ) and ( ) is defined as

S U A P Q A
K P K Q

= ⊆

| |

1

| ( ) ( ) |1( ( ), ( ))
| | | |

U
P i Q i

i

S x S x
D K P K Q

U U=

⊕
= ∑

See:  International Journal of Approximate Reasoning, 2009, 50 : 174 - 188. 

The knowledge distance aims to reveal the geometrical 
structure in granular spaces.



Basic Properties
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Let K(U) be the set of all granular spaces induced by U , then
(K(U), D) is a distance space.

Non-negtive

Symmetry

Triangle inequality

The knowledge distance can be used to distinguish the 
divergence between two granular structures with the same 
information granularity (or information entropy).

The knowledge distance characterizes the essence of 
uncertainty of granular structures.



N( o1) n-  ( neg) 0; ( at )iveG P ≥

(2)  ,P Q∀ ∈

Axiom approach of generalized information granularity

Axiom 3: Let K = (U, R) be a group of granular spaces,  if for          
R, there is a real number G(P) with the following properties: 
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Then G is called a generalized information granularity on K.
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2. Accelerator of Feature Selection



Feature selection is a challenging problem in areas such 
as pattern recognition, machine learning and data mining.

To select feature subset efficiently, many heuristic feature 
selection algorithms have been developed. The common 
approach is the forward greedy search strategy to select a 
subset of features ,  which has a wide variety of applications.

In feature selection, there are two general strategies, 
namely wrappers and filters.

Feature selection

Accelerator of Feature Selection



In rough set theory, feature selection (also called 
attribute reduction) aims to retain the discriminatory 
power of original features.

Symbolic values——Discernibility matrix approach and 
heuristic approach.

Numerical values——Relying on fuzzy rough set theory 
or doing discretization of the numerical attributes.

Reduction for two types of data



Complete reduction——Employing discernibility matrix 
approach to obtain all reducts of an information system (or a 
decision table).

A single reduct——Finding a single reduct from a given 
data set by using heuristic search strategy.

Some other reduction approaches, such as optimal reduction, 
approximation reduction, and so on.

Attribute reduction

Two Reduction Tasks



Skowron proposed a discernibility matrix approach to obtain 

all attribute reducts of an information system.

Many other scholars studied the discernibility matrix approach 

in extended rough set models.

Discernibility Matrix Approach



Grzymala Busse proposed the idea of attribute reduction using positive 
region.

Hu and Cercone proposed the positive-region reduction algorithm for a 
decision table.

Ziarko developed the β-reduct based on the variable precision rough set 
model.

Yao et al. gave the attribute reduction approach in decision theoretic rough 
set.

Many other techniques of heuristic attribute reduction approaches are 
provided. 

Heuristic Attribute Reduction Approach



Each of the existing methods preserves a particular property of a 

given information system or a given decision table.     

The existing algorithms are still computationally very expensive, 

which are intolerable for dealing with large-scale data sets with 

high dimensions.

Limitation of Existing Algorithms



The partition induced by equivalence 
relation provides a granulation world of 
describing the target concept. Hence, 
one can structure a granulation world 
ordered from coarser to finer.  

In an information system, by adding 
attributes or attribute values, one can 
get a ordered granulation world (from 
coarser to finer). 

Coarser granulation

Granulation Order

Finer granulation



Positive 
region

Boundary 
region

Coarser granulation
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Positive Region Varying with Granulation
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The principle shows that a target decision can be positively approximated 
by using a granulation order from coarser to finer. This mechanism implies the 
idea of the accelerator for improving the computing performance of a heuristic 
attribute algorithm.



Significance measures of attributes

Representative Significance Measures

Attribute dependent degree 

Shannon’s conditional entropy

Complementary conditional entropy

Combination conditional entropy
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Inner Importance

For the decision table ( , ) and , the significance 
measure of is defined as

S U C D B C
a B
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∈

1 { }( , , ) ( ) ( ),inner
B B aSig a B D D Dγ γ −= −

3 ( , , ) ( | { }) ( | ),innerSig a B D E D B a E D B= − −

2 ( , , ) ( | { }) ( | ),innerSig a B D H D B a H D B= − −

4 ( , , ) ( | { }) ( | ).innerSig a B D CE D B a CE D B= − −



Outer Importance

For the decision table ( , ) and , the significance 
measure of is defined as

S U C D B C
a C B

= ∪ ⊆
∈ −

1 { }( , , ) ( ) ( ),outer
B a BSig a B D D Dγ γ∪= −

3 ( , , ) ( | ) ( | { }),outerSig a B D E D B E D B a= − ∪

2 ( , , ) ( | ) ( | { }),outerSig a B D H D B H D B a= − ∪

4 ( , , ) ( | ) ( | { }).outerSig a B D CE D B CE D B a= − ∪



Rank preservation of the significance of attributes

Rank Preservation

( , , , ) ( , , , )outer outersig a B D U sig b B D U≥

( , , , ') ( , , , ')outer outersig a B D U sig b B D U≥

, ' ( ).U
Bwhere U U POS D= −

⇒

From above equation, one can see that the rank of attributes in the process 
of attribute reduction will retain unchanged after reducing the lower 
approximation of positive approximation.

This mechanism can be used to improve the computational performance of 
a heuristic attribute reduction algorithm, while retaining the same selected 
feature subset.
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An attribute 
reduct
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The process of forward greedy algorithm based on rough set theory
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Feature selection algorithm based on rough set theory



See:  Positive approximation: an accelerator for attribute reduction in rough set theory, 
Artificial Intelligence, 2010, 174(9-10): 597-618.

Accelerator

Accelerated Feature Selection Algorithm
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The complexities description



Experimental Analysis

Data sets description



Each of these nine data sets is divided into twenty parts equally, 
denoted by

( 1, 2, , 20).ix i = "

( 1, 2, , 20),iX i = "

1 1

2 1 2

20 1 2 20

,
,

.

X x
X x x
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=
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#

"

Experimental Design

The twenty data sets using in the experiment is the combination of  xi , denoted 
by



Comparison of Algorithms

The time and reduct of the classic algorithm and accelerated algorithm based on positive region



The time of the classic algorithm and accelerated algorithm based on positive region



The time and reduct of the algorithms based on Shonnon’s entropy



The time of the algorithms based on Shannon’s entropy



The time and reduct of the algorithms based on complementary entropy



The time of the algorithms based on complementary entropy



The time and reduct of the algorithms based on combination entropy



The time of the algorithms based on combination entropy



Stability Analysis of Accelerator AlgorithmStability Analysis of Accelerator Algorithm

The stability of a heuristic attribute reduction algorithm 
determines the stability of its classification accuracy. 

The objective of this suite of experiments is to compare the 
stability of the computing time and attribute reduction of each of the 
modified algorithms with those obtained when running the original 
methods. 

In the experiments, in order to evaluate the stability of feature 
subset selected with 10-fold cross validation, we partition a given 
data set to 10 subsets with the same size. The standard deviation is 
used to the stability of each algorithm. The lower the value of the 
standard deviation, the higher the stability of the algorithm. 

Experiment design







Advantage of Accelerator AlgorithmAdvantage of Accelerator Algorithm

Each of the accelerated algorithms preserves the attribute 
reduct induced by the corresponding original one.

Each of the accelerated algorithms usually comes with a 
substantially reduced computing time when compared with 
amount of time used by the corresponding original algorithm.

The performance of these modified algorithms is getting 
better in presence of larger data sets; the larger the data set,
the more profound computing savings. 



3. Conclusion and Further Work



The uncertainty measures can be used to measure the 
significance of attributes, design heuristic feature selection 
algorithms, etc.

The granular space distance can be used to distinguish the 
divergence between two granular structures with the same 
information granulation (or information entropy).

The accelerated algorithm can choose the same attribute reduct
as its original version, which possesses the same classification
accuracy. 

The accelerated algorithm is high-efficiency, especially for large-
scale data sets.

Conclusion



It is our wish that this study provides new views on dealing with 
large-scale and complicated data sets in applications.

Further Work

Uncertainty measures for generalized rough set models.

Feature selection for the large-scale data sets by separating 
and fusing data sets.

Efficient accelerated feature selection mechanism for hybrid 
data sets.

Incremental feature selection algorithms for dynamic data sets.



Thank you!Thank you!


	Uncertainty and Feature Selection in Rough Set Theory

