Jouo A &

Uncertainty and Feature Selection
In Rough Set Theory

Jiye Liang

School of Computer and Information Technology,
Shanxi University, Taiyuan, 030006, Shanxi, China
ljy@sxu.edu.cn

Shanxi Uﬂiversit_y



11. Uncertainty in Rough Set Theory

2. Accelerator of Feature Selection

3. Conclusion and Further Work




~ 1. Uncertainty in Rough Set Theory




Rough set theory is a usual soft computing tool for dealing
with imprecise, uncertain, and vague information.

Approximate Uncertaint Attribute
method y reduction




E Concepts

Certainty is regular, certain, crisp and exact properties in
the development process of objective things.

Uncertainty is unordered, casual, fuzzy and approximate
properties in the development process of objective things.




| |

€ Randomness is an uncertainty caused by that the condition can
not determine the result.

€ Fuzziness is an uncertainty caused by the unclearness of object’s
classification.

€ Roughness refers to the uncertainty of concept approximation in
rough set theory, which is caused by the inequality between the
upper approximation and the lower approximation.

€ Granulation uncertainty argues that a cognitive subject is
uncertain on the current information granulation.

Randomness and fuzziness are two basic natures of uncertainty.
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Uncertainty measures
in rough set theory
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» Shannon’s entropy

Let S = (U, A) be an information system, U /A = {X;, X,, ..., X, }
IS a partition on U and p; = p(X;) = |T||

\Xi\

| X
H(A)__ZM 10|




> Complementary entropy

XIXE] X L X,
= (A )‘Z|U||U| TRy

where X/’ isthe completment set of X, .
> Combination entropy

CE(A)—ZlX |C|U| C|§(i|

Ul Cy,

Cl -CpA
Where— lc z “denotes the probability of pairs of the elements which are
dlstlngwshable each other within the whole number of pairs of the elements

on the universe.




The above three measures of randomness can be used to
measure the significance of attributes in an information system.

> Sig, (a,A)=H(A)-H(Au{a})
> Sig(a, A) = E(A) - E(Au{a})

> Sige (a, A) = CE(A) - CE(AU{a})




€ Conditional entropy in decision tables

» Shannon’s conditional entropy

| X | X, mYl |Xiij|
H(D|C)=
(1o Z|U|Z | X | | X |

» Complementary conditional entropy

Y, A X, []YE = XE
£PI0)=3 3 Ul 0

i=l j=1

» Combination conditional entropy

CE(D|C)= Z(lxl 'X' ZleYl .,

)
Ul c; & IVl C




The above three measures of randomness can be used to
define the significance of attributes in a decision table, which are
as follows.

> 519,,(a,C,D)=H(D|C)-H(D|Cu{ia})
> Sig:(a,C,D)=E(D|C)-E(D|Cu{a})

> Sig..(a,C,D)=CE(D|C)-CE(D|Cu{a})




// .
The roughness of a target concept results from its

boundary region induced by the lower approximation and

—_the upper approximation. -
|[RX| _|BN(X)]
» Roughd X 1-—= —
ough degree  PA(X) = | 0% | RX |

For the different approximation spaces, the rough degrees

of a target concept may be identical.




» Rough entropy of A
| X 1
E, (A) = Z
|U| IXI
» Rough entropy of X
E (X)=pa(X)E (A)

u 1
= —pa(X )Z;ll— m)

The rough entropy possess the better depicting ability than the rough
degree for measuring the roughness of a rough set.




€ Relationship between the rough entropy and Shannon’s
entropy in an information system

X1 X
= A= Z|U| X ] HA)= Z|U| |U|

N S
—

E, (A)+H(A)=log, |U |

The relationship between the rough entropy and Shannon’s entropy Iis
strict complement relationship, and they possess the same capability on
depicting the uncertainty of an information system.

mal 5ournal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2004,
12 (1) : 37-46. e —




€ Fuzzy entropy

A fuzzy entropy characterizes the fuzziness degree of a fuzzy set.

> e (A)= nf’” d" (A Aar)
P — d p(A’Anear)
7 AT (A AL
> G (A) = _kZ(ﬂA(ui) In 22, (U;) + (L 2, (U))A—1n 22, (W;))), k>0
__ 1 5 ua ) (1 0 (11 Y\akal) _
> e4(A)—n\/g_1;(/JA(ui)e + (- ua(u;))e 1)
e =Y ) ()




€ Fuzziness of a rough set

For any object u eU , the membership function of ue X is denoted by
| X Alul, |
| X |

where &, (u) represents a fuzzy concept. The fuzziness of the rough set can be
measured by the following fuzzy entropy

5x (U) —

VI

e, (X) =|ﬁ‘|25x ()18, (u,)).

Fuzzy entropy can be employed to measure the fuzziness of a rough set or
a rough decision in rough set theory.




Information granularity denotes the average measure of a
granular space induced by some information granules.

» Knowledge granularity

GK (A) =

- E(A)+GK(A)=1
» Combination granularity

CG(A) = Z'Xl c'f”'  CE(A)+CG(A) =1

Wmertainty, Fuzziness and Knowledge-Based Systems,
2004, 2008 L ——




€ Rough partial-order relation

Let K = (U, R ) be a group of granular spaces and P, Q € R. K(P) =
{ Np(x), x€EU } and K(Q) = { No(x), XE U } the granular structure induced by
P and Q, where Np(x) and Ny(x) are the neighborhood induced by object x
with respect to P and Q.

/> Rough partial order relation = is defined as: )
K(P)<K(Q)(P,QeR) < N,(x) < NQ(X), XeU.

If K(P) < K(Q)and K(P) # K(Q), we say K(P) is strictly finer
than K(Q) , denoted by K(P) < K(Q).

- /




€ Granulation partial-order relation

6 Granulation partial order relation < iIs defined as: \

K(P)<x K(Q) <« There exists a bijective mapping function
f:K(P)—> K(Q) suchthat | N,(x)|<| f(N,(X))], xeU.

If there is a bijective mapping function f : K(P) — K(Q) such
that| N, (x) |=] f (N, (x))], xeU, denoted by K(P) ~ K(Q).

IfK (P) < K(Q) and K(P) £K(Q) , we say K(P) is strictly
@nulation than K(Q) , denoted byK(P) < K(Q). /




K(P):I I I _______ I I
T~_  Rough partial-order
KO- @ @ @ relation
N~ -

Granulation partial- —
order relation

?e: |EEE Transactions on Fuzzy Systems, 2011, 19(2): 253-264. ——




Axiom 1: Let K = (U, R) be a group of granular spaces, if foryp ¢
R, there is a real number G(P) with the following properties:

(1) G(P)=>0; (Non-negative)
(2) VP,QeR,if K(P)=K(Q),thenG(P)=G(Q); (Invariability)

(3) VP,QeR,if K(P)< K(Q),thenG(P) < G(Q). (Rough
monotonicity)
Then G is called a rough granularity on K.




Axiom 2: Let K = (U, R) be a group of granular spaces, if foyp
R, there is a real number G(P) with the following properties:

(1) G(P)=0; (Non-negative)
(2) VP,QeR,if K(P) ~ K(Q),thenG(P) = G(Q); (Invariahility)

(3) VP,QeR,if K(P) < K(Q),thenG(P) < G(Q). (Granulation
monotonicity)

Then G is called an information granularity on K.

Wgranules and entropy theory in information systems. Sci. China., Ser. F.
51, 1427-1444 (2008) e —




It has been proved that some existing definitions are various
special forms of information granularity.

(1) GK(A) is an information granularity, |T1| <GK(A)<1.
(2) CG(A) is an information granularity, 0 < CG(A)<1.

(3) E,(A) is an information granularity, 0 < E_(A)<log, |U |.

mn granules and entropy theory in information systems. Sci. China.,
Ser. F. 51, 1427-1444 (2008) e —




» In rough set theory, information entropy and knowledge granulation

are two main approaches to measuring the uncertainty of a
knowledge structure in knowledge bases.

» If the knowledge granulation (or information entropy) of one
knowledge structure is equal to that of the other knowledge structure,

we say that these two knowledge structures have the same
uncertainty.

» However, it does not mean that these two knowledge structures are
equivalent each other.

» Information entropy and knowledge granulation cannot characterize

the difference between any two knowledge structures in a
knowledge base.




For the information system S = (U, A), P,Q < A The knowledge
distance between K(P) and K(Q) is defined as

L 1Sp (%) @ Sq(X) |

1
D(K(P),K(Q)) =——
(K(P),K(Q)) thZ:l: U

The knowledge distance aims to reveal the geometrical
structure in granular spaces.

Eee: |nternational Journal of Approximate Reasoning, 2009, 00 . 1rd ol S8




€ Several properties of the knowledge distance:

(1)0< D(K(P),K(Q))ﬂ—ﬁ; (Extremum)
(2) D(,) :1‘|U1|’ and D(K(P), &) + D(K(P), 5) =1—|Ul|, (Complement)

where @={N; (%) | N5 (%) =0}, % €U}, and 6 ={N,(x) | No(x) =U, x; €U},
(3) D(K(P),K(Q)) = D(=K(P),=K(Q)); (Symmetry)
(4) 1f K(P)=K(Q)=K(R), then D(K(P), K(R)) = D(K(P), K(Q)) +
D(K(Q), K(R)); (Linearity)
(5) iIf K(P)<K(Q), then D(K(P),») <D(K(Q),®) and D(K(P), o)
> D(K(Q), ). (Monotonicity)




Let K(U) be the set of all granular spaces induced by U , then
(K(U), D) Is a distance space.

e Non-negtive
e Symmetry
e Triangle inequality
» The knowledge distance can be used to distinguish the

divergence between two granular structures with the same
Information granularity (or information entropy).

» The knowledge distance characterizes the essence of
uncertainty of granular structures.




€ Axiom approach of generalized information granularity

Axiom 3: Let K = (U, R) be a group of granular spaces, if foyp
R, there is a real number G(P) with the following properties:

(1) G(P)=>0; (Non-negative)

(2) VP,QeR,if D(K(P),w)=D(K(Q),w),thenG(P) = G(Q);
(Invariability)

(3) VP,QeR,if D(K(P),w) < D(K(Q),w),thenG(P) < G(Q).
(Monotonicity)

Then G is called a generalized information granularity on K.

g | pteaten o
4 0




2. Accelerator of Feature Selection
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B Feature selection

Feature selection is a challenging problem in areas such
as pattern recognition, machine learning and data mining.

To select feature subset efficiently, many heuristic feature
selection algorithms have been developed. The common
approach is the forward greedy search strategy to select a
subset of features, which has a wide variety of applications.

In feature selection, there are two general strategies,
namely wrappers and filters.




In rough set theory, feature selection (also called
attribute reduction) aims to retain the discriminatory
power of original features.

F Reduction for two types of data

' » Symbolic values——Discernibility matrix approach and
heuristic approach.

» Numerical values——Relying on fuzzy rough set theory
or doing discretization of the numerical attributes.




B Attribute reduction

» Complete reduction——Employing discernibility matrix
approach to obtain all reducts of an information system (or a
decision table).

» A single reduct——Finding a single reduct from a given
data set by using heuristic search strategy.

» Some other reduction approaches, such as optimal reduction,
approximation reduction, and so on.




> Skowron proposed a discernibility matrix approach to obtain

all attribute reducts of an information system.

» Many other scholars studied the discernibility matrix approach

In extended rough set models.




» Grzymala Busse proposed the idea of attribute reduction using positive
region.

» Hu and Cercone proposed the positive-region reduction algorithm for a
decision table.

» Ziarko developed the B -reduct based on the variable precision rough set
model.

» Yao et al. gave the attribute reduction approach in decision theoretic rough
set.

» Many other techniques of heuristic attribute reduction approaches are
provided.




» Each of the existing methods preserves a particular property of a

given information system or a given decision table.

» The existing algorithms are still computationally very expensive,
which are intolerable for dealing with large-scale data sets with

high dimensions.




The partition induced by equivalence
relation provides a granulation world of
describing the target concept. Hence,
one can structure a granulation world
ordered from coarser to finer.

In an information system, by adding
attributes or attribute values, one can
get a ordered granulation world (from
coarser to finer).

Coarser granulation

SN

O

oy
Q00000

Finer granulation




Coarser granulation e e e e e e e e cecea== » Finer granulation

oundar
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Let S =(U,CuD)be adecision table, X cU and P ={R,,R,,---,
R }withR <R,<---<R (R €2°).GivenP ={R,R,,---,R}, then

i+1 i+1

POS; (D)=POS, (D)u POS. (D),

where U, =U andU,,, =U — POS; (D).

The principle shows that a target decision can be positively approximated
by using a granulation order from coarser to finer. This mechanism implies the
Idea of the accelerator for improving the computing performance of a heuristic
attribute algorithm.




E Significance measures of attributes

v Attribute dependent degree  7c(D)
v Shannon’s conditional entropy  H(D|C)
v Complementary conditional entropy  E(D|C)

v Combination conditional entropy  CE(D|C)




For the decision table S = (U,C u D) and B < C, the significance
measure of a<B is defined as

Sig,"" (a,B,D) = 75(D) — 75 (D),
Sig," (a,B,D)=H(D|B—{a})-H(D|B),
Sig,"" (a,B,D)=E(D|B—{a})-E(D|B),

Sig™* (a, B, D) = CE(D | B —{a}) - CE(D| B).




For the decision table S = (U,C u D) and B < C, the significance
measure of acC — B is defined as

Sig;"" (a,B, D) = 75 (D) = 76 (D),

Sig?™™ (a,B8,D) = H(D | B)— H (D | B u{a}),

Sigs"*'(a,B,D)=E(D|B)-E(D|Bw{a}),

Sig® (a, B, D) = CE(D | B) -~ CE(D | BuU{a}).




B Rank preservation of the significance of attributes

sig®* (a, B, D,U) > sig®™* (b, B, D,U)
— sig™* (a,B,D,U") >sig™* (b, B,D,U")

where, U'=U —POS; (D).

From above equation, one can see that the rank of attributes in the process
of attribute reduction will retain unchanged after reducing the lower
approximation of positive approximation.

This mechanism can be used to improve the computational performance of
a heuristic attribute reduction algorithm, while retaining the same selected
feature subset.
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€ Feature selection algorithm based on rough set theory

Algorithm 1. A general forward greedy attribute reduction algorithm.

Input: Decision table S =(U,CUD);
Output: One reduct red.
Step 1. red < ¥; |[red is the pool to conserve the selected attributes;
Step 2: Compute Sig™ (a;., C, D), k < |C|: |/Sig™™ (g, C, D) is the inner importance measure of the attribute a:
Step 3: Put a into red, where Sig™® (a, C, D, U) > 0;
Step 4: While EF(red, D) #EF(C, D) Do /[This provides a stopping criterion.
{red < red U {ag}, where Sig™® (aq, red, D) = max{Sig™® (a;, red, D), a, € C —red}}: //Sig® (a;, C, D)
is the outer importance measure of the attribute a;
Step 5: Return red and end.




Algorithm Q1. A general improved feature selectio

Input: Decision table S = (U, CU D); {Compute POSU (D)’
Output: One reduct red. i
Step 1: red < @; [[red is th | h — U
ep 1: red « flremn:;t e pool to conserve the s Ui+1 —U - POSP_ (D),
Step 2: Compute Sig™ (ax, C, D, U), k <|C|; '
Step 3: Put ay into red, where Sig"" (., C, D, U) 5 | <—1+1]1
Step 4: i < 1, Ry =red, Py ={R1} and Uy < U; _ .
Step 5: While EF(red, D) # EFV! (C, D) Do red «<—red u{a,}, where Sig®™ (a,,red, D,U.)
- Lomnite the posiiive e nasnyeistl .
= max{Sig°* (a,,red,D,U.),a, €C —red},
R < R, u{a},
. ReRoRy R}
Step 6 Retur red and encl }

mproximation: an accelerator for attribute reduction in rough set theory,
Artificial Intelligence, 2010, 174(9-10): 597-6_




B The complexities description

Algorithms Step 2 S-rep 3 _ Step 5 Other steps
Eachof original algorithms —~—— O(CU) —— 0(c) 02 UNICl-i+1))  Constant
FSPA ofclh  oqch o Cl-i+ 1) Constant




Data sets descrietion

Data sets Cases Features Classes
| Mushroom 3644 22 2
2 Tic-tac-toe 958 9 2
3 Dermatology 358 M 6
4 Kr-vs-kp 3196 36 2
3 Breast-cancer-wisconsin 683 9 2
6 Backup-large.test 376 35 19
7 Shuttle 58000 9 7
8 Letter-recognition 20000 16 26
9 Ticdata2000 5822 83 2




Each of these nine data sets is divided into twenty parts equally,
denoted by

x (i=12,---,20).
The twenty data sets using in the experiment is the combination of X; , denoted
by
X. (i=12,---,20),
where, X, =X,

X, =X +X,,

Xog = X, + Xy + 04 Xy




The time and reduct of the classic algorithm and accelerated algorithm based on positive region

PR algorithm FSPA-PR algorithm
Data sets Original features ~ Selected features  Time (s)  Selected features  Time (s)
Mushroom 22 3 248750 3 20.4531
Tic-tac-toe 9 8 0.3594 8 0.3125
Dermatology RE 10 0.8438 10 0.4375
Kr-vs-kp 36 29 28.0313 29 21.5781
Breast-cancer-wisconsin 9 1 0.1250 1 0.0938
Backup-large.test 35 10 0.6563 10 0.4219
Shuttle Y 1 906.0625 1 712.2500
Letter-recognition 16 I 282.6406 8 112.6250
Tiedata2000 85 4 886.4531 24 296.3750
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The time and reduct of the algorithms based on Shonnon’s entroey

SCE algorithm FSPA-SCE algorithm
Data sets Original features  Selected features  Time (5) Selected features Time (s}
Mushroom 22 4 1626406 4 1 59,5938
Tic-tac-toe 9 E 4.5000) 8 31004
Dermatology M 11 5.3125 11 1.0844
Kr-vs-kp 3 29 149.6250 20 105.9844
Breast-cancer-wisconsin 9 4 |.3438 4 (.5438
Backup-large. test 35 10 4.3594 10 1. 7656
Shuitle 9 4 1 2665, 3906 4 [0153.1719
Letter-recognition 16 11 TO15.7031 11 2740, 2500

Ticdata2000 A5 24 A153.6563 4 1043, 8906
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The time and reduct of the algorithms based on comelementarz entropy

LCE algorithm FSPA-LCE algorithm
Data sets Original features  Selected features  Time (s) Selacted features Time (s}
Mushroom 22 4 00,2188 4 294.0000
Tic-tac-loe 9 8 8734 8 57813
Dematology ke 10 10.4531 [0 37500
Krvs-kp 36 29 [156.1250 29 [91.1250
Breast-cancer-wisconsin 9 3 31250 5 L6719
Backup-large test 33 10 9.84 35 [0 32188
Shuttle 9 4 24883.6250 4 20228, 3906
Letter-recognition 16 12 15176.7656 2 53587813
Ticdata2000 85 4 279626250 4 |805.5625
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The time and reduct of the algorithms based on combination entropy

CCE algorithm FSPA-CCE algorithm
Data sets Original features  Selected features  Time (s) Selectad features Time (s
Mushroom 22 4 1669219 4 1 59.6406
Tic-tac-toe 9 8 6. 7656 B 3, 1406
Dermatology 34 10 58281 10 22656
Kr-vs-kp 36 29 149.7500 29 105.7500
Breast-cance -wisconsin 9 4 1.3594 4 (. 8906
Backup-large. lest 33 9 4.578] 9 1.9544
Shuttle 9 4 137188750 4 109489219
Letier-recognition 16 11 T118.2656 11 2610.3594
Ticdata2000 83 24 H262.0469 24 1048, 5781
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The time of the algorithms based on combination entropy




€ Experiment design

The stability of a heuristic attribute reduction algorithm
determines the stability of its classification accuracy.

The objective of this suite of experiments is to compare the
stability of the computing time and attribute reduction of each of the
modified algorithms with those obtained when running the original
methods.

In the experiments, in order to evaluate the stability of feature
subset selected with 10-fold cross validation, we partition a given
data set to 10 subsets with the same size. The standard deviation Is
used to the stability of each algorithm. The lower the value of the
standard deviation, the higher the stability of the algorithm.




The stabilities of the time and attribute reduction of algorithms PR and FSPA-PR.

Data sets PR's time FSPA-PR's time PR's stability FSPA-PR's stability
Mushroom 16.8359 £0.2246 14.8438 £ 0.2130 0.0000 £ 0.0000 0.0000 £ 0.0000
Tic-tac-toe 0.3234+£0.0222 0.2391 £0.0262 0.0000 £ 0.0000 0.0000 £ 0.0000
Dermatology 0.8234 £0.0494 0.3922 4+ 0.0109 0.2142 £ 0.1692 0.2142 £0.1692
Kr-vs-kp 25.0781 £4.3400 16.2438 £ 0.2232 0.067 5+ 0.0652 0.0675+£0.0652
Breast-cancer-wisconsin 0.1156 £0.0104 0.0813 £ 0.0094 0.1733£0.2736 0.1733£0.2736
Backup-large.test 0.6344 £0.0788 0.3891 £0.0331 0.4187 £ 0.1830 0.4187 £0.1830
Shurtle 778.6959 £29.4587 551.6750 £ 10.6770 0.0250£ 0.0750 0.0250£0.0750
Letter-recognition 224.1219 £7.3887 00,5797 £ 1.5252 0.2222£0.2020 0.2222 £0.2020
Ticdata2000 G98.1016 £54.8386 248.8391 £6.5261 0.2058 £ 0.0862 0.2058 £0.0862

The stabilities of the time and attribute reduction of algorithms SCE and FSPA-SCE.

Data sets SCE's time F5PA-5CE's time SCE's stability FSPA-SCE's stability
Mushroom 130.6234 £ 0.9870 126.1625£0.8873 0.0000 £ 0.0000 0.0000£0.0000
Tic-tac-toe 38350+ 0.0614 2.50454+ 0.0617 Q111 00111 Q1111 +£0.0111
Dermatology 4.0500 4+ 0.3197 1.6266 £ 0.0422 0.5312+0.1000 0.5312+0.1000
Kr-vs-kp 126.7734+ 15.7752 83.2801 £0.9501 0.0675+0.0652 0.0675 +0.0652
Breast-cancer-wisconsin 1.2156 £ 0.0894 0.7500+0.0677 0.3562+0.3099 0.3562+0.3099
Backup-large.test 3.7234£0.3919 1.4188 £ 0.0655 0.3599£0.2521 0.3599£0.2521
Shurtle 0749.1705£308.8128 2158.8490 £ 209.5685 0.0250 4+ 0.0750 0.0250+0.0750
Letrer-recognition 5891.5906 £ 151.0442 22828141 £73.0362 0.1689£0.1823 0.1689£0.1823
Ticdara2000 7107.3904 £ 105.7970 B61.2000£9.7081 0.24854+0.0830 0.2485 +0.0830




The stabilities of the time and attribute reduction of algorithms LCE and F5PA-LCE.

Data sets LCE's time FSPA-LCE's time LCE's stability FSPA-LCE's stability
Mushroom 241.9891 £1.3425 236.0313 £1.6868 0.0000 =+ 0.0000 0.0000 £ 0.0000
Tic-tac-toe 7.3328 £ 0.0601 4.7531 £0.1007 01778+ 0.0889 01778+ 0.0889
Dermatology B.2875+ 0.6289 30938 £0.0617 0.1852+0.1783 0.1852+0.1783
Kr-vs-kp 228.9547 £ 27 .4934 154.4984 £2.0417 0.067540.0652 0.067540.0652
Breast-cancer-wisconsin 2.5969 + 0.0493 1.4031 +0.0554 0.23334+0.1528 0.23331+0.1523
Backup-large.test 7.9094 4+ 0.4949 27109 +0.1746 0.1617 £0.1630 0.1617 £0.1630
Shuttle 17717.9594 & 301 4628 14392.4496 £99.2163 0.0250£0.0750 0.0250 £ 0.0750
Letter-recognition 12334.27 29+ 80.6504 4252.5578 £71.4054 01914+ 0.1436 0.1914+0.1436
Ticdata2 000 19582.65151 3852873 14637391 £14.5646 017444+ 0.1192 0.17444+0.1192

The stabilities of the time and attribute reduction of algorithms CCE and FSPA-CCE.

Dara sets

CCE's time

FSPA-CCE's time

CCE’s stability

F5PA-CCE's stability

Mushroom

Tic-tac-toe

Dermatology

Kr-vs-kp
Breast-cancer-wisconsin
Backup-largetest
Shuttle
Letter-recognition
Ticdata2 000

133.96724£0.9331
3.8301 £ 0.0297
4.6459+0.3029
130.0047 £17.5668
1.1969 £0.0865
3.B016+0.3155
0564.8752 +68.5368
5056.0833 £+ 43 .7866
B726.4778 +42.1287

129.3531£1.2343
2.5172+0.0439
1.8016£0.0335
46.3641 +0.9297
0.7406 £0.0298
1.5875+0.1018
7440.3281 £+ 25.0001
2171.0000 4 36.5273
B59.4672 £ 10.7790

0.0000 £0.0000
0.1778 £0.0889
0.2735 £0.1698
0.0733 £0.0780
0.1200 £0.1600
0.3426 +£0.1780
0.0230+0.0750
0.1370+0.1450
0.1742+0.0894

0.0000 £ 0.0000
0.1778£0.0889
0.2735+£0.1693
0.0733 £ 0.0780
0.1200£0.1600
0.3426+0.1780
0.0250+0.0750
0.1370£0.1450
0.1742+0.0804
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Each of the accelerated algorithms preserves the attribute
reduct induced by the corresponding original one.

Each of the accelerated algorithms usually comes with a
substantially reduced computing time when compared with
amount of time used by the corresponding original algorithm.

The performance of these modified algorithms is getting
better in presence of larger data sets; the larger the data set,
the more profound computing savings.




3. Conclusion and Further Work
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» The uncertainty measures can be used to measure the ]

significance of attributes, design heuristic feature selection
algorithms, etc.

divergence between two granular structures with the same

» The granular space distance can be used to distinguish the
Information granulation (or information entropy).

as its original version, which possesses the same classification
accuracy.

» The accelerated algorithm is high-efficiency, especially for larg

» The accelerated algorithm can choose the same attribute reducj
e
scale data sets.
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Uncertainty measures for generalized rough set models.

Feature selection for the large-scale data sets by separating
and fusing data sets.

Efficient accelerated feature selection mechanism for hybrid
data sets.

Incremental feature selection algorithms for dynamic data sets.
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It I1s our wish that this study provides new views on dealing with
large-scale and complicated data sets in applications.
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